Well-posedness of the Hele-Shaw-Cahn-Hilliard system
نویسندگان
چکیده
We study the well-posedness of the Hele-Shaw-Cahn-Hilliard system modeling binary fluid flow in porous media with arbitrary viscosity contrast but matched density between the components. Well-posedness that is global in time in the two dimensional case and local in time in the three dimensional case are established. Several blow-up criterions in the three dimensional case are provided as well.
منابع مشابه
A Posteriori Error Estimates for Finite Element Approximations of the Cahn-hilliard Equation and the Hele-shaw Flow
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + ∆ ` ε∆u− ε−1f(u) ́ = 0. It is shown that the a posteriori error bounds depends on ε−1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct an adaptive algorithm f...
متن کاملLong-time behavior for the Hele-Shaw-Cahn-Hilliard system
We study the long time behavior of the Hele-Shaw-Cahn-Hilliard system (HSCH) which models two phase incompressible Darcian flow in porous media with matched density but arbitrary viscosity contrast. We demonstrate that the ω-limit set of each trajectory is a single stationary solution of the system via Lojasiewicz-Simon type technique. Moreover, a rate of convergence has been established. Event...
متن کاملN ov 2 01 5 Nonlinear diffusion equations as asymptotic limits of Cahn – Hilliard systems Pierluigi Colli Dipartimento di Matematica , Università di Pavia and IMATI C . N . R . Pavia
An asymptotic limit of a class of Cahn–Hilliard systems is investigated to obtain a general nonlinear diffusion equation. The target diffusion equation may reproduce a number of well-known model equations: Stefan problem, porous media equation, Hele-Shaw profile, nonlinear diffusion of singular logarithmic type, nonlinear diffusion of Penrose–Fife type, fast diffusion equation and so on. Namely...
متن کاملNumerical Analysis of the Cahn-hilliard Equation and Approximation for the Hele-shaw Problem, Part Ii: Error Analysis and Convergence of the Interface
In this second part of the series, we focus on approximating the Hele-Shaw problem via the Cahn-Hilliard equation ut + ∆(ε∆u − εf(u)) = 0 as ε ↘ 0. The primary goal of this paper is to establish the convergence of the solution of the fully discrete mixed finite element scheme proposed in [21] to the solution of the Hele-Shaw (Mullins-Sekerka) problem, provided that the HeleShaw (Mullins-Sekerka...
متن کاملA second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system
We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...
متن کامل